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As is well known, in inverse boundary value problems of the theory of analytic functions 
two boundary conditions are specified on unknown portions of the boundary [i]. If one of 
the latter is replaced by an optimized portion, the inverse problem is called a variational 
problem [2]. Variational inverse boundary value problems of aerohydrodynamics (IBPA) may 
consist in the construction of wing profiles possessing optimized characteristics (maximum 
lift, minimum resistance, et al.). Statements of such problems go back essentially to a 
paper of Lavrent'ev [3] in which a formulation was given for the problem of optimizing the 
shape of a profile, taking into account conditions guaranteeing nonseparation of the flow 
over a large portion of its contour. 

It follows from the results given in [4] (see [5]) that among profiles with a smooth 
contour a circle provides maximum lift under streamline flow. However, it does not conform to 
the requirements of aerodynamic design if only because, under a real flow, separation of the 
fluid from its surface occurs. 

A numerical-analytical method for maximizing the lift of a profile with a sharp outside 
edge, flown over by an ideal incompressible fluid, was proposed in [5] under restrictions 
expressing simplified conditions for nonseparation of the flow. The magnitude of the lift 
R was expressed in terms of the Fourier coefficients of a function connected with the con- 
f~rmal mapping of the unit disk in an auxiliary plane onto the profile exterior. An ex- 
tremum of Ry is attained by varying a finite set of these coefficients under indicated addi- 
tional restrictions. Conditions for closure of the contour are satisfied empirically. 

Solutions are also known of variational IBPA, which take into account viscosity of the 
flow in the framework of boundary layer theory. In a number of papers (for example, [6-9]) 
profile resistance or aerodynamic quality was optimized for a family of profiles with a 
parametrically specified contour, flown over by a viscous incompressible fluid under vari- 
ous assumptions concerning structure of the boundary layer. As constraints, the lift coef- 
ficient Cy, the angle of attack ~, and the maximum thickness of the profile, or ~ and the 
profile area, were specified, as well as a criterion for nonseparation of the flow. For 
each profile of such a family, as a result of solving the direct problem aerodynamic char- 
acteristics were calculated and their optimization was carried out by selecting values of 
the free parameters under the constraints indicated above. Analogous results were obtained 
in problems involving subsonic or transonic flow of a gas, possibly viscous, around profiles. 
A survey of these papers can be found in [i0]. 

A second approach to aerodynamic optimization of wing profiles, foundations for which 
are presented in [ii], is based on the theory of inverse boundary value problems [i] and 
is developed in the present paper. In what follows, optimized profiles, flown over without 
separation, are constructed under various nonseparability conditions, a comparison of these 
solutions is given, and conclusions are made. It is shown that the nonseparability condi- 
tion for a complete turbulent boundary layer ensures nonseparability of the flow even in the 
presence of laminar cells on a mixed part of the contour. Conditions are presented for 
physical realizability of a solution, these being imposed on a set of control functions and 
connected with the construction of single-sheeted wing profiles. Optimization problems are 
also studied with additional constraints on aerodynamic characteristics for a range of at- 
tack angles. 

i. Functionals for Optimization of Aerodynamic Characteristics. The following integral 
representation of the solution of a basic IBPA [i] was used in [ii] for optimization of the 
shape of wing profiles: 
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z(~) : e-i~ exp -- (2a)-~ g ( ? ) ~ d ?  d~, 
1 0 

I ~ l > i .  ( 1 . 1 )  

H e r e g ( ? ) = a o + P ( ? ) + h ( ? ) ;  h ( ? ) = ( e - - i ) l n [ 2 s i n ( ? / 2 ) ] ;  a0, e, and B a r e  c o n s t a n t s  ( l ~ e ~ 2 ,  0 ~ } ~ a / 2 ) ;  
t h e  HSlder  c o n t r o l  f u n c t i o n  P(y)  s a t i s f i e s  t h e  c o n d i t i o n s  

2 ~  2 ~  

, 5 v ( v ) e v = 0 .  (1 .2)  
0 0 

In  Eq. ( 1 . 1 )  f u n c t i o n  z (~)  maps t h e  e x t e r i o r  o f  t h e  u n i t  c i r c l e  i n  t h e  ~ - p l a n e  c o n f o r m a l l y  
on to  t h e  e x t e r i o r  o f  t h e  wing p r o f i l e ,  bounded by a c l o s e d  p i e c e w i s e - L y a p u n o v  c o n t o u r  L z w i t h  
a sha rp  edge a t  t h e  p o i n t  z = O, where t h e  a n g l e  i n t e r i o r  to  t h e  f low domain i s  e q u a l  t o  ew, 
and flown over by an ideal incompressible fluid at a given incident flow rate. The constant 

is equal to the theoretical angle of attack (angle of inclination of the profile to the 
direction of irrotational flow), and the constant a 0 determines the magnitude L of the peri- 
meter L z . 

We consider a class of profiles with a fixed perimeter L of the contour. Let us assume 
that each of the profiles is flown over by a smooth plane-parallel unbounded established flow 
of an incompressible viscous fluid at substantively large Reynolds numbers. We select a sys- 
tem of coordinates such that the axis of abscissas is parallel to the velocity vector of the 
oncoming flow; the magnitude v~ of this velocity and the fluid density P are assumed to be 
known. In modeling such a flow, with smallness of the displacement thickness 8" of the 
boundary layer and wake taken into account, potential flow around a profile by an ideal fluid 
has been considered approximately (see, for example, [12, 13]) as displacements of a poten- 
tial flow around a semi-infinite body. Under the assumptions indicated, the lift Ry, the 
profile drag R x, and the aerodynamic quality K may be expressed, taking relation (i.i) into 
account, in the form of the following functionals [II] specified on a set of admissible func- 
tions P(u 

R u = 23-~.~pv~L sin [~/Y (P), Rx = 2='=pv~L (2Aa) '/~ He'/~-ID (P), 
K = Ru/R~ = 2 -l'2yc sin ~ (2Aa)-':~ HeX-l:~/E(P). ( 1 . 3 )  

Here 

2 ~  

J (P) f [sin (?/2)] e-1 exp P (?) dy; 
0 

D ( P ) =  B ( P )  [/(V)]-'/~; E ( P ) =  B(P)  [7(P)] '-'/~ 

B (P) = G= (p; ~,) d r |  + G~ (P; ~,) dv /  } {cos ~ exp [ -  P (0)IF, , = 3,2 - (7 - a)/(3 - a); 
Ln+2B 

Re = v ~ L / v ;  A and a are  i n t e r r e l a t e d  e m p i r i c a l  cons tan t s  de te rmined  by the  method f o r  c a l c u -  
l a t i n g  the  t u r b u l e n t  boundary l a y e r  ( s p e c i f i c  va lues  f o r  them are  g i ven  be low) ;  v i s  t he  
known kinematic coefficient of viscosity; 

Gf(P; ])= sin (]/2)Icos (]/2 -- ~)13(=+I)/(3-~) exp [-4aP(?)/(3 - e)]. (i .4) 

We note that for known models for calculation of the boundary layer the quantity r differs 
insignificantly from zero. This makes it possible to simplify somewhat the expression for 
B(P), putting r = 0. 

Thus, by virtue of the functions (1.3), for fixed p, v~, and $, to maximize Ry and K 
and to minimize R x it is necessary to minimize the corresponding functionals J(P), E(P), 
and D(P) on the set U of control functions P(y) which, besides the conditions (1.2), must 
satisfy the condition for nonseparability of the flow and guarantee the physical realizabil- 
ity of the resulting solution. 

2. Constraints on the Control Functions. As remarked above, one of the basic con- 
straints on the control functions P(u must be the condition of nonseparability of flow over 
the corresponding profile, In the approximation of boundary layer theory known criteria for 
the absence of separation of a turbulent flow can be written in the form [12, 13] 

/ ( s ) ~ ] . ,  [ ,  = - -  ~/A (/(s) = v '(s) l t (s));  ( 2 . 1 )  
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I ~ ( s ) = a l u ( s ) l -  b y [U(T)Ib--ldT @ C , ( 2 . 2 )  
St' 

where  a = (m + 1) /m;  b = 2(4m + 1 ) / ( 2 m  - 1 ) ;  v ( s )  i s  t h e  v e l o c i t y  d i s t r i b u t i n g  a l o n g  Lz;  slx I 
(0~ s ~L) is the arcwise abscissa, reckoned from the trailing edge, so that the flow domain 
stays to the left; st, (s,~ s t < L or 0 < st ~ s,) is the abscissa of the point of transi- 
tion from laminar to turbulent flow on the upper or lower surfaces of Lz; s, is the arcwise 
abscissa of the branch point of the flow; and f,, A, and m are known empirical constants. 
In particular, m = 4. -5.57 J f'i! --4.77, according to Prandtl-Burr; m = 6, -3 J f, ! -2, 
according to Loitsyanskii; m = ~, -0.8 ! f, i -0.7, according to Bam-Zelikovich; m = 6, 
f, = -6, according to Kochin-Loitsyanskii; A = 0.01256 for m = 4, and A = 0.00655 for m = 6 
[12, Sec. 54]. Constant C in relation (2.2) characterizes the laminar flow portion and can 
be calculated, for example, from the formula [14, Sec. 12] 

] b--2  **  a **  b 1 C = t't v(i{Qt ) /(aA), Re t = atv-~v [v(r)]'q-Jdz ( 2 . 3 )  
L i s ,  

[a  1 = 0 . 4 5 ,  b 1 = 5 . 3 5 ,  v t = v ( s t ) ] .  To d e t e r m i n e  t h e  l o c a t i o n  o f  t h e  b o u n d a ry  l a y e r  t r a n s i -  
t i o n  point st, we employ an empirical criterion, due to Euler [15], according to which there 
is a transition from laminar to turbulent flow if 

t n B e * * ( s ) )  B~  = t8,4Ha2-21,74,  Re**(s )=  v(s)6**(s)/v, 

where  Ha2 = Ha2( s )  i s  t h e  d e p t h  o f  e n e r g y  l o s s  in  t h e  bounda ry  l a y e r ;  5 * * ( s )  i s  t h e  d e p t h  o f  
momentum l o s s .  App ly ing  t h e  method f o r  c a l c u l a t i o n  o f  t h e  l a m i n a r  l a y e r  [14,  Sec .  112] ,  we d e t e r -  
mine s p e c i f i c  v a l u e s  o f  Re T by i n t e r p o l a t i n g  w i t h  r e s p e c t  t o  t h e  q u a n t i t y  H, which  i s ,  i n  
t u r n ,  a f u n c t i o n  o f  t h e  f o r m - p a r a m e t e r  f ( s e e  T a b l e  17 in  [ 1 4 ] ) .  As a r e s u l t  o f  t h e  i n t e r -  
p o l a t i o n ,  we o b t a i n  t h e  m o n o t o n i c a l l y  d e c r e a s i n g  f u n c t i o n  

Ha2= G ( H ) , t , 9  < H <  4,03, t ,5t5 = G(4,03)< G(H)< G ( t , 9 ) =  L7. ( 2 . 4 )  
Thus, the quantity s t must be the smallest of the roots of the equation 

Re**(s)=exp{tS,4G[H(s)]--21,74}. ( 2 . 5 )  

We assume that point S t is located on the mixed portion. Using this, we s]how that the 
following estimate applies: 

& ( s ) ~ ( s ) .  (2.6) 

Here f0(s) is given by expression (2.2) when s t = s,, C = 0, and there is a purely turbulent 
boundary layer. 

Let s correspond to points of the upper surface of the profile (the case of the lower 
surface is considered in a similar way). By virtue of relations (2.2), (2.3), to establish 
inequality (2.6) it is sufficient to justify the estimate 

st 

~< ~ [u (r)]b-ldT. C 
S$ 

N ot ing  t h a t  b 1 > b and v ( s ) / v  t ~< 1 f o r  s ,  ~< s ~< s t ,  we have  

s t st st 

.b-1 ~[ |p(r)/~tlb-ld~__ b-h  : h - '  - S[P (T)] b-ldr = U t I> Nt J 'iv (T)] ~. 
S~ 85 S$ 

From relations (2.3) it follows that 

g,t 

['[v(T)lh-ldT ~ **~ b-~,  - -vr te , t  vtl /a  t. d 

Using the preceding inequality, we derive the result 

r~ , , Z  bl--21 
j ' [ v ( r ) l b - l d T / > v ~ e t  u t /a t . 
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$ $ 2 - - a  
Hence ,  i n e q u a l i t y  ( 2 . 6 )  w i l l  be s a t i s f i e d  i f  n e t  ~ad(aA). I t  f o l l o w s  f rom r e l a t i o n s  ( 2 . 4 )  

$ , a  2 a and ( 2 . 5 )  t h a t  Re t ~ ( 4 6 2 . 2 ) - .  Thus ,  f o r  t h e  s a t i s f a c t i o n  o f  r e l a t i o n  ( 2 . 5 )  i t  i s  s u f f i c i e n t  
t h a t  p a r a m e t e r s  a and A s a t i s f y  t h e  c o n s t r a i n t  al/(aA)~(462,2) 2-~. V e r i f i c a t i o n  o f  t h e  l a s t  
i n e q u a l i t y  f o r  v a r i o u s  s e t s  o f  p a r a m e t e r s  a and A has  shown t h a t  t h i s  i n e q u a l i t y  i s  v a l i d .  
We have  t h u s  e s t a b l i s h e d  t h e  p r o p e r t y  ( 2 . 6 ) .  I t  f o l l o w s  f rom t h i s  t h a t  t o  g u a r a n t e e  non-  
s e p a r a t i o n  o f  t h e  f l ow  f o r  t h e  c a s e  i n  which  s t i s  l o c a t e d  on t h e  mixed p o r t i o n ,  i t  i s  s u f -  
f i c i e n t  t o  r e q u i r e  f u l f i l l m e n t  o f  c o n d i t i o n  ( 2 . 1 ) ,  a ssuming  a c o m p l e t e l y  t u r b u l e n t  b ounda ry  
l a y e r  ( s  t = s~.~, C = 0 ) .  The l a t t e r  c o n d i t i o n ,  in  t h e  e x p r e s s i o n  i n v o l v i n g  f u n c t i o n  P (y )  w i t h  

= 2, t a k e s  on t h e  form 

( - - t ) JG, (P;  ?)~/o~Go(P;'f), foj~/,, ]= t, 2, 
? ~ [ 0 ,  ~ + 2 ~ ] f o r  ] = I ,  7~[,~+2~, 2~] for  ] = 2 ,  

( 2 . 7 )  

G o ( / ' ; ~ , ) = G o ( P ; ? ) [ a  ~4_! G,,(P; v)dvl] -x, 

G~(P; "f)= - - P ' ( ? ) - -  0,5 t g ( ? / 2 -  ~), 

operator G 2 is defined in relation (1.4); j = i corresponding to the upper surface of L z 
and j = 2 corresponds to the lower surface. Since inequality (2.1) can hold everywhere on 
L z only when ~ = 2, throughout the sequel it is this case we consider. We note that func- 
tional J(P) is strictly convex, while the function P,(y) = (i - ~)in(isin(~/2)), yielding 
its global minimum in space L 2 under conditions (1.2), is not HSlderian and does not satisfy 
relation (2.7). Consequently, the extremum of J(P) is attained on the boundary of a set of 
HSlderian functions satisfying conditions (1.2) and (2.7). The situation is similar in 
problems involving minimization of E(P) and D(P). 

3. Conditions for Physical Realizability of a Solution. The constraints (1.2) and 
(2.7) on the set U do not guarantee physical realizability of a solution; in particular, a 
profile with a simple contour. Difficulties in guaranteeing this property are connected 
with the absence of necessary and sufficient conditions for single-sheetedness of a solu- 
tion, which would be expressed in terms of the function P(y). Simplicity of contour L z can 
be achieved if on U we impose an arbitrary one of the sufficient conditions for single- 
sheetedness of an IBPA solution (see, for example, [16]). However, these conditions char- 
acterize only certain subclasses of the set of single-sheeted solutions, which leads to a 
subtantial contraction of the set U. It is therefore more expedient to contract U at the 
expense of eliminating from it part of the non-one-sheeted solutions by using the necessary 
conditions for one-sheetedness. We indicate some of these, expressing them rather simply 
in terms of the function P(u 

We consider a set of profiles with an infinitely thin trailing edge (e = 2), bounded by 
Lyapunov contours Lz, the curvature of which is everywhere bounded. By developing a proposi- 
tion of G. Yu. Stepanov concerning the impossibility for single-sheeted profiles of distribu- 
tions v(s) increasing monotonically from a branch point to a point of descent of the flow, 
presented at a symposium in Irkutsk in 1988 on "Modern Problems of the Mechanics of Fluids 
and Gases," F. G. Avkhadiev showed (in a report at a seminar at the Scientific-Research 
Institute of Mathematics and Mechanics of Kazan University, Nov. No. 14, 1989) that the 
following condition is sufficient for non-single-sheetedness of the flow domain:t 

v01 (~) + v0~(2~ - 4) < 2v0 (0), 0 < ~ < ~. ( 3 . 1 )  

Here  v0(Y) = I v 0 [ s ( y ) ] [ ;  v 0 ( s )  i s  t h e  v e l o c i t y  d i s t r i b u t i o n  on L z c o r r e s p o n d i n g  t o  t h e  i r r o -  
t a t i o n a l  f l ow  mode; v 0 z ( y )  = v 0 ( ~ )  f o r  0 ~  (on t h e  u p p e r  s u r f a c e  o f  Lz ) ;  v 0 2 ( y )  = v 0 ( u  
f o r  ~ < ? ~ 2 ~  (on t h e  l ower  s u r f a c e ) .  I t  f o l l o w s  n a t u r a l l y  f rom r e l a t i o n  ( 3 . 1 )  t h a t  f o r  
s i n g l e - s h e e t e d  p r o f i l e s  m o n o t o n i c a l l y  i n c r e a s i n g  d i s t r i b u t i o n s  v 0 ( s )  a r e  i n a d m i s s i b l e .  

I t  f o l l o w s  f rom F. G. A v k h a d i e v ' s  p r o p o s i t i o n  t h a t  f o r  s i m p l e  c l o s e d  L z s a t i s f a c t i o n  
o f  t h e  i n e q u a l i t y  o p p o s i t e  t o  i n e q u a l i t y  ( 3 . 1 )  i s  n e c e s s a r y :  

max [v0x (y) + v02 (in - -  y)] ~ iv0(0). ( 3 . 2 )  
0 ~  

Using the condition 

v [s(~)] = 2uolcos(~/2 - ~)1 exp I--a0 - P(~) ], 

where  u 0 i s  a known c o n s t a n t ,  we d e r i v e  t h e  f o l l o w i n g  i n e q u a l i t y  f rom i n e q u a l i t y  ( 3 . 2 ) :  

#The, r e s u l t  i s  m e n t i o n e d  w i t h  t h e  c o n s e n t  o f  t h e  a u t h o r .  

(3.3) 
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max r  =~(P; 7)=cos(7/2){exp[-P(7)]+exp[-P(2g-~)]}-2cxp[-P(O)]. (3.4) 
0 ~  

When inequality (3.4) is satisfied, we also have the inequality 

max { I cos (?/2) I exp [-- P (?)]} > exp [-- P (0)], ( 3 . 5 )  
0 ~ 2 ~  

e q u i v a l e n t  to  t h e  c o n d i t i o n  max v0(?)>vn(O ). I t ,  by v i r t u e  o f  c o n d i t i o n  ( 3 . 1 ) ,  i s  a l s o  a 

necessary condition for single-sheetedness; however, it determines a set of admissible func- 
tions P(y) much broader than (3.4). We remark that in the case of symmetric profiles the 
conditions (3.4) and (3.5) coincide. 

Numerical calculations have shown, with minimization of the functionals E(P), D(P) for 
arbitrary $ and minimization of J(P) for $ ~ 0.2, that not taking into account additional 
requirements connected with a guarantee of physical realizability of a solution leads to a 
non-single-sheeted profiles, and, among the optimal profiles obtained using condition (3.4), 
one does encounter non-single-sheeted profiles. It is therefore convenient to apply, in- 
stead of inequality (3.4), more stringent constraints. One of them, constructed by analogy 
with inequality (3.2) and used in a computational experiment, may be written as follows: 

Vo1(?)+vo2(2=--7)>2vo(O), 0 4 7  ~ 7 o  < ~ ( 3 . 6 )  

(Yo i s  a f i x e d  q u a n t i t y ) .  In  an e x p r e s s i o n  i n v o l v i n g  P(y)  i n e q u a l i t y  ( 3 . 6 )  t a k e s  t h e  form 

~ ( p ;  7)>0, 047470. (3.7) 

Being more stringent than relation (3.4), the constraint (3.7) allows for the possibility of 
a loss of single-sheeted solutions. On the other hand, for values of Y0 close to ~, taking 
the constraint (3.7) into account did, as calculations have shown, yield single-sheeted so- 
lutions. 

4. Numerical Optimization. Functions P(u providing a minimum to the functionals J, 
N 

D, and E on the set U, were sought in the form of trigonometric polynomials P~(?)--~(alcosIy+ 
i=I 

bzsinl%0, where N is a given quantity and, by virtue of conditions (1.2), a I = E - i, b I = 
0. In order to guarantee that PN(u possess the HSlder property, with fixed coefficient A 0 
the following constraints were imposed on the constants at, bs 

]a,] <(Ao- 1)/[2'/2l(N- 1)], ib~f <(Ao- t)/[2'J2l(N- I ) ] ,  l = 2 . . . . .  N, 

where A 0 z 102 . Calculations have shown that such a value for h 0 has no effect on the op- 
timization results when there is a substantial increase in the length N of the segment of 
Fourier series, i.e., the solution obtained is automatically HSlderian with the indicated 
coefficient. To numerically realize the conditions for nonseparation on the interval [0, 
2~], points u j = 1 ..... M I were selected, at each of which satisfaction of the correspond- 
ing inequality in relations (2.7) was verified. In a similar way, points ~j, j = i, .... M2, 
were selected in order to implement the inequality (3.6) on the interval [0, u 

Considering the functionals being minimized as functions of 2(N - i) independent coef- 
ficients a~, b~, we obtain a nonlinear programming problem of dimensionality 2(N -I)(M I + 
M2). Its solution was accomplished by the relaxation method presented in [17]; this re- 
quired substantial expenditure of machine time in connection with the calculation of the 
integrals appearing in the functionals being minimized and the function G0(P; u In par- 
ticular, for N = 5, M I = 27, M 2 = 13, one iteration requires 40 sec for minimization of D(P) 
and 30 sec for minimization of J(P), with processing time on the ES-I046 computer. Thus N 
proves to have the largest influence on the expenditure of machine time. For example, in 
minimizing J(P), using the same values for M l and M2, a two-fold increase in N led to an in- 
crease of up to 140 sec of computer time for one iteration. The total number of iterations 
oscillated from units to several tens of iterations depending on the choice of initial ap- 
proximation. 

Figures 1-4 present optimized profiles, nonseparated according to Loitsyanskii. The 
choice of this criterion may be explained by the fact that it gives the best agreement, in 
comparison with other criteria, of results on nonseparability in calculations with respect 
to more precise models. 
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Figure 1 shows the maximum lift profiles [and the v(s) distributions for them] obtained 
for various ~: ($ = 0.i rad = 5.7 ~ , continuous curve; 6 = 0.15, dashed curve; 6 = 0.2, dash- 
dot curve). The arc-abscissa is referred to the perimeter L; velocities are referred to the 
given value v~, and contour coordinates are referred to the chord c. Profiles 1-3 in Fig. 1 
have lift coefficients Cy = 0.748, 1.084, 1.388, respectively, for angles of attack ~ = 3.72, 
5.8, 8.64 ~ . It is evident that with an increase in ~ (hence also in ~) profiles, optimal in 
the sense of lift, become thinner and Cy increases. Thus, an increase in the lift takes place 
mainly at the expense of a change in v(s) on the lower surface of the profile. There is an 
essential increase in the velocity in a neighborhood of a branch point of the flow. 

Figure 2 presents single-sheeted profiles i-3 of minimum resistance, obtained for the 
same values of $ for Re = 106 and have C x = 0.0122, 0.0133, and 0.0155 for ~ = 2, 3.4, and 
5.4 ~ . 

The profiles described are, first of all, of theoretical interest. However, possessing 
the corresponding extremal properties, they can, like Liebeck's profile [18], serve as dis- 
tinctive guide lines defining the direction for seeking optimal aerodynamic forms. 

Further, the calculations have shown that for fixed values of ~ the functionals E(P) 
and D(P) differ little from one another in their behavior. This explains the agreement in 
the profiles of maximum aerodynamic quality and minimum resistance, obtained as a result of 
minimizing the indicated functionals (Fig. 2, K = 53.8, 81.7, and 84.2). 

If the value of ~ is not fixed beforehand, then it, along with the coefficients aE, b E 
are among the parameters being sought for optimization. It follows from relations (1.3) that 
to maximize Ry it is necessary in this case to minimize the functional J0(P; 6) = J(P)/sin 6, 
where P ~ U, 0 ~ ~ ~ a/2. The computational experiment has shown that with an increase in 6 
the minimal values of J(P) also increase, but much more slowly than sin 6. There arises, 
therefore, the problem of finding the maximum value of 6 for which the set of admissible so- 
lutions is nonempty. It has been shown that as 6 decreases the minimum value of the func- 
tional D0(P; ~), expressing profile resistance, decreases and the corresponding profile be- 
comes thinner, approximating a plate in form, flown over at zero angle of attack, and also, 
as N increases the optimal profiles become thinner. 

Thus, with 6 variable, to the maximization of Ry there corresponds an increase in angle 
$; to the minimization of R x there corresponds a decrease in 6 to zero. As for the func- 
tional E0(P; 6) = E(P)/sin ~, expressing aerodynamic quality, as 6 increases the minimum value 
of E 0 first decreases and then increases. There is, as a result, a unique value of 6 cor- 
responding to the absolute minimum of E 0. 

Figure 3 displays profiles 1-3, obtained as a result of minimizing J0, Do, and E0, re- 
spectively. Profile 1 maximizes Ry and has Cy = 1.499 with attack angle ~ = 9.6 ~ . Profile 
2 minimizes R x and has relative thickness 0.037, C x = 0.0101 for ~ = 0 and Re = 106 . We 
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note that the resistance coefficient found differs little from the theoretical value of C x for 
a plate (see, for example, [14]), which for Re = i06 for a purely turbulent boundary layer is 
equal to 0.0094. Profile 3 maximizes K and has Cy = 1.382, C x = 0.0163 for ~ = 6 ~ and Re = 
I0 ~ For this profile K = 84.7. For comparison, note that for profile 1 we have C x = 0.0199 
and K = 75.3 for the same Re. 

5. Problems w St h Additional Constraints on Aerodynamic Characteristics. Along with the 
problems described above, a case of interest is that in which one of the aerodynamic char- 
acteristics is optimized with constraints on the others [for example, on coefficients Cy, C x 
or with a maximum value for v(s) on the contour]. By virtue of relations (1.3), all of these 
constraints can be expressed directly in terms of P(y). 

Let C,~C, (C~ is a given quantity). Taking note of relations (2.9) and the fact that 
for real profiles the chord, as a rule, amounts to 47-49% of the contour perimeter, the 
indicated constraint on C x can, for fixed 6, be replaced, with an accuracy of 1-2%, by the 
constraint 

D (P) <~D =~Cx [23.2 (2Aa)'" '  Re-l/(~+I)d] -1, d = 2,04 - 2,t3. (5 .  l ) 

Inequality (5.1) serves as an additional constraint on the set U in the minimization of J(P). 

In Fig. 4 curve 1 represents the solution of this problem for ~ = 0.i, Re = 106 and Cx = 
0.015. For the profile we have Cy = 0.706 for ~ = 0.78 ~ . 

Assume now that the additional constraint C~ ~ C~ is specified. By virtue of relations 
(2.8), for fixed $ this is equivalent to the inequality 

1 ( P ) ~  = ~ d  ~ ~/~. (5 .2 )  

The problem obtained is that of minizing the functional D(P) on set U with the additional 
constraint (5.2). In Fig. 4, profile 2 is the solution of the latter problem for $ = 0.I, 
Re = I0 ~, and Cy = 0.720; here C x = 0.0159 and ~ = 2.6 ~ . 

We remark that the problem described in the present section may be easily extended to 
the case in which the quantity ~ is variable. 

6. Optimization with Nonseparation Conditions Taken into Account for a Range of Angles 
of Attack. As is well known, even for small changes in the angle of attack due to separation 
arising in the flow, significant deterioration in the aerodynamic characteristics of a wing 
profile can occur. It is therefore important, from the practical point of view, to seek op- 
timized profiles with nonseparation of the flow over them over a fairly broad range of angles 
of attack. 

In [19] a condition was obtained for the absence of separation of a completely turbulent 
boundary layer for a change in the angle of attack ~ over a given range ~ = ~- a2, ~2 ~ ~ ~ ~i./ 
This condition has the form 
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/ (~;~,s)~/ , ,  s~[sl ,  L] for i = J ,  s~[O,s~] for ]=2 .  (6.1) 

Here vj(s) are the velocity distributions on the upper (j = 1) and lower (j = 2) profile 
surfaces for flow over them at attack angles ~l and ~2, respectively; sj are arc-abscissas 
of branch points of the flow for ~ = ~j. The form-parameter f(vj; sj, s) is given by the 
formula (2.2) for C = 0, s t = sj and v(s) ~ vj(s). Changing over in relation (6.1) from 
vj(s) to vj(y) [see relation (3.3)] and noting that to the abscissas sj there correspond 
the polar angles 7~ = x +2~j (~2 ~ ~ ~ ~l)on the unit circle, we obtain the condition for non- 
separation of the flow over the profile in the range 6 = ~i - ~2 = 81 - ~2 in the form 
(2.7), where ~ = ~i for j = I and ~ = ~2 for j = 2. The named condition is easily used in 
place of condition (2.7) as a constraint on the set of control functions P(u 

The authors wish to thank N. B. ll'inskii and G. Yu. Stepanov for useful comments. 
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